

TH 2321 and TH 233 AC/DC MAINS TRIODE HEPTODES

RATING (Both Types).						
Heater Voltage	•••	•••		•••	•••	23.0
Heater Current (Amps.)	•••	•••			• • • •	0.2
Heptode.						
Maximum Anode Voltage						250
Maximum Screen Voltage					• • •	250
*Mutual Conductance (mA/V)	•••				•••	3.0
*Taken at Ea== 150;	Es = 100) : Eg=	= -2 :	Eg=0).	
Triode.				•		
						150
Maximum Anode Voltage	(mA)	•••	•••			15
Maximum Peak Anode Current			•••	•••	•••	16
*Amplification Factor	•••	•••	•••	•••	•••	5.3
*Mutual Conductance (mA/V)		··· 0	•••	•••	•••	3.3
*Taken at Ea=	= 100 ;	Eg=0.				
TYPICAL OPERATION.						
Heptode.						
Anode Voltage				•••	175	175
Screen Voltage (Initial)					100	100
Grid Bias					3	2.5
Anode Current (mA)					2.6	3.1
Screen Current (mA)					5.6	6.9
Conversion Conductance (μ A)					640	770
					1.3	1.0
Anode A.C. Resistance (megoh Heterodyne Volts Peak	ilis)		•••	•••	8.0	8.0
*Maximum Input signal handlin	a cana	ity (F	34	Fs=1		9
*Conversion Conductance (Eg=	34	Fe 17	5 (A	/V) (an	prox.))	9
*For 5 per cent. Total Audio Harm	onic D	listorti	on at	60 per	cent.	1odu-
	ionic D	13001 01	OII &L \	oo pe.		
lation.						
Triode.						
Anode Voltage	•••			•••	•••	80
Anode Current (mA)		•••			4	to 5
INTERNAL-ELECTRODE CAP	ACITI	EC				
	AC: 11	LJ.	TH	2321	TH 2	22
Heptode.				11.5	11.25	
*Anode to Earth	•••	•••	•••	9.5	9.25	$\mu\mu$.
*Grid to Earth	•••	•••		0015		$\mu\mu$ F.
Anode to Grid	•••	• • •	0	0013	0.0003	$\mu\mu$ F.
Triode.						
*Anode to Earth (less G0 to A0)			4.0	3.5	$\mu\mu$ F.
*Grid to Earth (less G0 to A0)				10.25	10.5	$\mu\mu$ F.
Anode to Grid				2.25		$\mu\mu$ F.
*" Earth " denotes the electrodes		v seco				
remaining earthy potential electro	des of	the sec	tion u	nder n	neasure	ment.
H and M joined to cathode.						
· · · · · · · · · · · · · · · · · · ·						
DIMENSIONS.						
Maximum Overall Length		• • •	1	27 mm		mm.
Maximum Diameter				39 mm	. 7	2 mm.
Maximum Diameter		•••		37 11111		L min.

GENERAL.

The TH.2321 and TH.233 are triode heptode frequency changers for use in A.C./D.C. mains receivers. They have been specially designed to meet the requirements of all wave receivers, and the inter-reaction between the input and oscillator circuits have been reduced to a minimum. A high conversion conductance is provided with a large initial grid bias, thus ensuring that no grid current is taken on the short wave bands. The characteristics, which are identical for both types, have been so designed as to provide large signal handling capacity with low cross modulation and low harmonic response. The TH.2321 is fitted with a standard 7-pin base, while the TH.233 is of small dimensions and fitted with the Mazda Octal base. The connexions are given below.

APPLICATION.

in each case the triode oscillator should be used with a parafeed tuned anode circuit and the component values required are given in the circuit shown. If any trouble is experienced with "squegging" at the highest frequency the grid leak resistance may be reduced to 25,000 ohms. On the short wave bands the mean anode current of the triode would be of the order of 4 to 4.5 mA, while on the medium and long waves the current taken by the triode will be of the order of 3 to 3.5 mA. An average heterodyne voltage of 8 to 10 volts peak is required at the grid of the triode. The value of the series grid resistance R.3 will depend very largely on the design of the coils and the effect of stray capacities across the grid of the triode. On the short wave band this resistance is usually of the order of 50 or 60 ohms. It may be necessary to insert a wave wound coil between the H.T. supply and the parafeed resistance R.2 in order to remove the damping effect of this resistance on the long and medium wave oscillator circuits. The peak anode current of the triode should never be allowed to exceed 15 mA. If parasitic oscillations are generated, these may be stopped by connecting a resistance (R.6) of 2.5 to 5 ohms close to the screen pin. The heater is designed to operate at 0.2 ampere close to the screen pin. and the resistance placed in series with the heaters should be such that the heater current has this value at average line voltage.

TH.2321.

- Pin No. I. Oscillator Anode.

 - Oscillator Grid. Heptode Screen. 2. 3.
 - 4. Heater.
 - Heater.
 - Cathode and Metallising.

Heptode Anode. Heptode Control Grid. Top Cap.

Viewed from the free end of the base.

TH.233.

- Pin No. I. Heater.
 - Cathode. 3.
 - Heptode Anode.
 - Oscillator Anode. Oscillator Grid.

 - Metallising. Heptode Screen.
 - 8. Heater.
 - Top Cap Heptode Control Grid.

SUGGESTED CIRCUIT DIAGRAM USING TH 2321 and TH 2 33

Values of the components in the circuit diagram:
R1. 50,000 ohms. C1.
R2. 15,000 to 20,000 ohms. C2.

C1. .0001mfd. C2. .0001mfd. C3. 0.01mfd. C4, 0.1—0.5mfd. C5. 0.1—0.5mfd.

Masda Radio Valves are manufactured in Great Britain for the British Thomson-Houston Co., Ltd., London and Rugby, and distribute: hy THE EDISON SWAN ELECTRIC CO., LTD., 155, CHARING CROSS ROAD, LONDON, W.C.2

VP.133 A.C./D.C. MAINS H.F. PENTODE

,							
RATING.							
Heater Voltage							13.0
Heater Current (amps)						• • •	0.2
Maximum Anode Voltage						• • •	200
Maximum Screen Voltage	1						200
*Mutual Conductance (mA	(V)					•••	3.1
*Taken at	Fa=	200 :	$E_{s} = 150$: Eg=	=0.		
I ERON GO							
TYPICAL OPERATION.							
				150	150	165	175
	•••	•••	• • • •	100	150	165	175
, and a second s	•••		•••	<u>0.7</u>	-2.7		-3.9
Grid Bias Mutual Conductance (mA				2.35	2-1	2.0	2.0
				7.2	8.0		8.5
7 1110 20 5 2111 5111 71111	•••			2.0	2.2		2.3
Anode A.C. Resistance (n				0.8			0.8
Grid Bias for Mutual Cond	luctan	ce of I			_		43.5
†Maximum Peak Carrier In	nut V	alts.		_	-	_	9.5
				_		_	38
				or con	+ Mod	dation	
†For 5 per cent. Total D	istort	IOII WI	th a ou p	er cen	t. 1 10di	JIALIOII.	
Note.		1	(10	0 150	161	h	ianal
For the case of initial sc	reen	voitage	es of IU	0, 150	OF 10:	o, the s	ignat
handling capacity (M.P.C.	٤ (۲۰۰	rid bi	as and g	ain wii	i be th	e same	as in
the last column if the scr	een v	oltage	is allow	ed to	rise to	1/5 40	ts.
INTER-ELECTRODE CAPA	ACII						
*Anode to Earth		• • •				11.5	$\mu\mu$
0110 00 000				• • •		7.0	$\mu\mu$
Anode to Grid		•••	•••	•••		0.0025	
*" Earth" denotes the	remai	ning e	earthy	potent	ial ele	ctrodes	and
metallis	ing jo	ined t	o catho	de.			
DIMENSIONS.							
						105	mm
Maximum Overall Length		• • • •	•••	•••	•••	32	
Maximum Diameter .	•••	•••	• • •	•••	•••	32	11111,
GENERAL.		_			0 /5		
The VP.133 is a variable-mi	u H.F.	Pento	de tor u	se in A	C./D.0	recei	vers.

The VP.133 is a variable-mu H.F. Pentode for use in A.C./D.C. receivers. The bulb is of small dimensions and metallised. The valve is fitted with a British Octal β ase, the connections to which are given overleaf.

APPLICATION.

The valve has been specially designed for operation in A.C./D.C receivers employing the loud speaker field winding for smoothing. Under these conditions, the screen voltage does not rise above 175 volts with an average mains tapping. It is recommended that this valve should be used in a super-heterodyne receiver with a Mazda TH.2321 converter. When so used, in a receiver provided with automatic volume control the bias applied to the valve should be one-half to two-thirds of the bias applied to the TH.2321.

EDISWAN RADIO

Sheet 22/1

Pin No. 1. 2. 3.

Heater.
Cathode.
Anode.
Screen.
Suppressor Grid.
Metallising
Omitted.
Heater.
Control Grid. 4. 5. 6. 7. 8.

Top Cap.

Viewed from the free end of the base.

Mazda Radio Valves are manufactured in Great Britain for the British Thomson-Houston Co., Ltd., London and Rugby.

HL.133 DD

A.C./D.C. MAINS DOUBLE DIODE TRIODE

RATING.

Heater Voltage	 		 	13.0
Heater Current (Amps)	 		 	0.2
Maximum Anode Voltage	 		 	250
*Mutual Conductance (mA/V)	 		 	2.5
*Amplification Factor	 		 	32
*Anode A.C. Resistance (Ohms)	 		 	12,800
	0 ; Eg	=0.		

ac 2a - 700 | 28

OPERATING CONDITIONS.

H.T. Supply	 					165	185
Decoupling Res	(ohms.)					10,000	10,000
Anode Load (o	`					50,000	50,000
Anode Current						1.25	1.45
Grid Bias Volta						2.2	2.5
Self-Bias Resista	ms)					1,750	1,750
Voltage Amplif						20	21
Maximum Outr	R.M.S. 1	for 2	1% Har	monic	Cont	ent 22 }	27

INTER-ELECTRODE CAPACITIES.

Anode to Cathode	е	 	 	•••	$4.5 \mu\mu$ F
Grid to Cathode		 	 		$3.5 \mu\mu$ F
Anode to Grid		 	 		$3.5 \mu\mu$ F
*Diode I to Earth		 	 		$3.25~\mu\mu$ F
*Diode 2 to Earth		 	 		$3.25~\mu\mu$ F
Diode I to Diode	2	 	 		0.6 μμΕ

*"Earth" denotes the electrodes of any second valve section and the remaining earthy potential electrodes of the section under measurement, H. and M. joined to cathode.

DIMENSIONS.

Maximum overall length	 	 		105 mm.
Maximum diameter	 	 	•••	32 mm

GENERAL.

The HL.133DD is an indirectly heated double diode triode for use in D.C., A.C./D.C. mains, and car radio receivers. It consists of two separate diodes and a triode on a common cathode sleeve. The bulb is of small dimensions and metallised. The valve is fitted with a British Octal Base, the connections to which are given overleaf.

APPLICATION.

The HL.133DD is recommended for performing the simultaneous functions of A.V.C., detection and amplification. When the valve is used for detection, only D2 (pin No. 5) should be used for the purpose. If the other diode is not required, it should be connected to the cathode. The control grid should be biased by means of a self-bias resistance which should be by-passed with a condenser of 25–50 mFd.

BASING.

Viewed from the free end of the base.

Pin No. 1. Heater.
2. Cathode.
3. Anode.
4. —
5. D2.
6. Metallising.
7. D1.
8. Heater.
Top Cap Control Grid.

PEN. 383

BEAM POWER AMPLIFIER FOR AC/DC MAINS

AC/DC.					
RATING.					
Heater Voltage					38.0
Heater Current (Amps.)					0.2
Maximum Anode Voltage					200
Maximum Screen Voltage				• • •	200
Maximum Anode Dissipation (watts	5)				10
*Mutual Conductance (mA/V)					12
*Taken at Ea = 100	; Es = I	00; Eg	0.		
TYPICAL OPERATION.					
		13	8	150	160
Anode Voltage Screen Voltage		15		150	175
Grid Bias		8		8.75	10.0
Anode Current (mA.)		5	0	50	64
Screen Current (mA.)		- 1	0	10	13
*Anode Load (ohms)		2,80		2,900	2,600
*Power Output (watts)		2.6		2.95	3.75
*Input Swing Volts (RMS)			7	4.8	5.5
Bias Resistance (ohms)		14	5	145	130
* For 5 per cent. Third Harmonic, and	Secon	d Harm	onic	not exc	eeding
5 per cent.					
INTER-ELECTRODE CAPACITIES	•			12.5	-
*Anode to Earth	• • •			13.5	μμF. μμF. μμF.
*Grid to Earth	•••		• • •	21.2	$\mu\mu$
Anode to Grid	• • • •	• • • •	•••		
* "Earth" denotes the remaining metallising joined to cathode.	earthy	potent	ial e	electrode	es and

DIMENSIONS.

Maximum Overall Length Maximum Diameter ...

The PEN. 383 is an indirectly-heated beam power amplifier for use in A.C. D.C. receivers. A band of metallising covers the lower portion of the bulb, and the valve is fitted with a Mazda octal base, the connexions to which are given overleaf.

...

...

APPLICATION.

When used with average A.C. mains with series speaker field circuit, in which the speaker field requires approximately 6 watts, a screen voltage of the order of 145 to 150 will be obtained. Approximately 2.7 watts will be delivered, without exceeding 5 per cent. of either second or third harmonic, with an output transformer resistance of 250 ohms.

EDISWAN RADIO

Sheet 24/5

In the case of parallel speaker fields, approximately 3.75 watts will be delivered using an output transformer with resistance of 250 ohms, and a

delivered using an output transformer with resistance of 250 ohms, and a 300 ohms smoothing choke smoothing a speaker field of 6 watts.

The valve should always be self-biased, and the value required is given on the preceding page. The grid to cathode circuit should be kept as low as possible and should not exceed I megohm for an anode dissipation limit of 10 watts. The grid circuit must be efficiently decoupled, and this may be achieved either by connecting an electrolytic condenser of 50 to 75 µF. across the self-bias resistance, or decoupling the grid circuit in the usual manner. An anti-parastic resistance of the moulded type, and of a low self-capacity should be connected in the grid or anode circuit, and mounted close to the actual valve terminals. A value of 50 ohms is satisfactory in the case of an anode resistance.

satisfactory in the case of an anode resistance.

The anode load should be accurately determined, and kept reasonably

constant by the provision of a suitable condenser filter.

The heater is designed to operate at 0.2 amps. and the series heater resistance should be such that the heater current has this value at average line voltage.

BASING.

Pin No. I. Heater.

- 2. Cathode.
- 3. Anode.
- 4. Screen.
- 5. Control Grid.
- 6. Metallising.
- 7. Omitted.
- 8. Heater.

Viewed from free end of the base.

Mazda Radio Valves are manufactured in Great Britain for the British Thomson-Houston Co., Ltd., London and Rugby, and distributed by

THE EDISON SWAN ELECTRIC CO., 155, CHARING CROSS ROAD, LONDON, W.C.2.

U.403

AC/DC MAINS HALF WAVE RECTIFIER

RATING.

Heater Voltage				 	 	40.0
Heater Current	(Amps	s.)		 	 	0.2
Maximum Anode			M.S.)	 	 	250
Maximum Outpu				 	 	120

TYPICAL OPERATION.

	 200	230	200	230
	 90	90	120	120
	 16	16	16	16
	 193*	237*	175*	218*
fier	 8.5	8.5	11	11
	 	90 16 193*	90 90 16 16 193* 237*	90 90 120 16 16 16 193* 237* 175*

^{*} Voltage Output with 50 ohms limiting resistance in series with rectifier.

DIMENSIONS.

Maximum Overall Length	 	 	 100 mm.
Maximum Diameter	 	 	 38 mm.

GENERAL.

The U.403 is an indirectly heated half wave rectifier suitable for use in A.C./D.C. receivers. The bulb is metallised, and the valve is fitted with a Mazda octal base, the connexions to which are given overleaf.

APPLICATION.

To safeguard the valve from the large current surges present on switching, it is imperative to use a 50-ohm resistance in series with the anode. In A.C./D.C. receivers it is usually desirable to connect this resistance in series with the reservoir condenser in order not to reduce the voltage output on D.C. mains. The reservoir capacity should not exceed 16 $\mu \mathrm{F}$, unless an appreciably higher limiting resistance is employed. In use, the metal coating should be connected to the chassis.

EDISWAN RADIO

Sheet 22/6

BASING.

Viewed from the free end of the base.

- Pin No. I. Heater.
 - 2. Omitted.
 - 3. Cathode.
 - 4. Omitted.
 - 5. Anode.
 - 6. Metallising.
 - 7. Omitted.
 - 8. Heater.

Mazda Radio Valves are manufactured in Great Britain for the British Thomson-Houston Co., Ltd., London and Rugby, and distributed by THE EDISON SWAN ELECTRIC CO., LTD. 155, CHARING CROSS ROAD, LONDON, W.C.2.

